Development and nutritional characterization of chips made with tucumã-do-Amazonas flour (Astrocaryum aculeatum): a healthy and sustainable alternative for food consumption
DOI:
https://doi.org/10.58951/fstoday.2025.006Keywords:
Functional foods, Sustainable development, Amazonian fruits, β-Carotene, Nutritional characterization, Alternative food productsAbstract
The fruit of Astrocaryum aculeatum, native to the Amazon, possesses high nutritional value and functional potential but remains underutilized in food product development. This study aimed to develop and nutritionally characterize chips made from A. aculeatum flour as a healthy and sustainable food alternative. The formulation involved mixing the flour with water, salt, and dehydrated seasonings, followed by oven drying to achieve a crispy texture. Proximate composition, pH, and β-carotene content were analyzed, with β-carotene quantified using high-performance liquid chromatography (HPLC). The chips contained 33.23% carbohydrates, 29.55% lipids, 24.28% moisture, 7.12% ash, 5.82% protein, and an energy value of 446 kcal. The slightly acidic pH (5.66) favors product preservation, and the high β-carotene content (20.1 mg/100 g) highlights the chips as an excellent source of vitamin A. These results highlight the potential of A. aculeatum chips as a functional food, promoting the sustainable use of Amazonian biodiversity and contributing to food security.
References
Amorim, I. S., Amorim, D. S., Godoy, H. T., Mariutti, L. R. B., Chisté, R. C., Pena, R. da S., Bogusz Junior, S., & Chim, J. F. (2024). Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon, 10(2), e24054. https://doi.org/10.1016/j.heliyon.2024.e24054
Assis, R. Q., Maciel, F. S., Queiroz, B. B. T., Rios, A. de O., & Pertuzatti, P. B. (2025). Active films incorporated with pequi (Caryocar brasiliense Camb.) or buriti (Mauritia flexuosa L.) oil as strategy to protection of lipid oxidation and carotenoids photodegradation. Food Chemistry, 482, 144085. https://doi.org/10.1016/j.foodchem.2025.144085
Azevedo, S. C. M., Vieira, L. M., Matsuura, T., Silva, G. F. da, Duvoisin Junior, S., & Albuquerque, P. M. (2017). Estudo da conservação das propriedades nutricionais da polpa de tucumã (Astrocaryum aculeatum) in natura em embalagens a vácuo. Brazilian Journal of Food Technology, 20(0). https://doi.org/10.1590/1981-6723.10716
Batista, D. de V. S., Cardoso, R. L., Godoy, R. C. B. de, & Evangelista-Barreto, N. S. (2014). Estabilidade físico-química e microbiológica de banana passa orgânica. Ciência Rural, 44(10), 1886–1892. https://doi.org/10.1590/0103-8478cr20130442
Casas, L. L., Jesus, R. P. de, Neto, P. de Q. C., & Corrêa, S. A. M. (2022). Aspectos nutricionais, químicos e farmacológicos de Tucumã (Astrocaryum aculeatum Meyer e Astrocaryum vulgare Mart.) Nutritional, chemical and pharmacological aspects of Tucumã (Astrocaryum aculeatum Meyer and Astrocaryum vulgare Mart.). Brazilian Journal of Development, 8(2), 13667–13687. https://doi.org/10.34117/bjdv8n2-344
Coutinho, L. S., Batista, J. E. R., Caliari, M., & Soares Júnior, M. S. (2013). Optimization of extrusion variables for the production of snacks from by-products of rice and soybean. Food Science and Technology (Campinas), 33(4), 705–712. https://doi.org/10.1590/S0101-20612013000400016
De Rosso, V. V., & Mercadante, A. Z. (2005). Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Research International, 38(8–9), 1073–1077. https://doi.org/10.1016/j.foodres.2005.02.023
Ferreira, M. J. A., Mota, M. F. S., Mariano, R. G. B., & Freitas, S. P. (2022). Current scenario and recent advancements from tucumã pulp oil and kernel fat processing. European Journal of Lipid Science and Technology, 124(12). https://doi.org/10.1002/ejlt.202100231
Grizotto, R. K., & Menezes, H. C. de. (2004). Efeito da fermentação na qualidade de “chips” de mandioca (Manihot esculenta Crantz). Ciência e Tecnologia de Alimentos, 24(2), 170–177. https://doi.org/10.1590/S0101-20612004000200003
Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., & Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food & Agriculture, 1(1), 1018696. https://doi.org/10.1080/23311932.2015.1018696
Gurak, P. D. (2011). Degradação térmica e química de beta-caroteno e sua relação com a capacidade antioxidante e propriedades de cor. Tese (doutorado). Faculdade de Engenharia de Alimentos. Universidade Estadual de Campinas. https://doi.org/10.47749/T/UNICAMP.2011.836958
Horwitz, W., & Latimer, G. W. (2005). Official methods of analysis of AOAC International (18th ed.). AOAC International.
Kaur, M., Sumaya, & Kalidhasan, M. (2024). Food, Snacks, and Beverages: Business Management Perspectives. Em Reference Module in Social Sciences. Elsevier. https://doi.org/10.1016/B978-0-443-13701-3.00523-5
Ma, C., Li, C., Tian, H., Zhang, Q., Daizhu Lv, & Wang, M. (2025). Behavior of commonly used pesticides and their metabolites in banana fruits from cultivation, storage, maturation to crisp chips processing and health risk assessment. Journal of Food Composition and Analysis, 107550–107550. https://doi.org/10.1016/j.jfca.2025.107550
Machado, A. P. da F., Nascimento, R. de P. do, Alves, M. da R., Reguengo, L. M., & Marostica Junior, M. R. (2022). Brazilian tucumã-do-Amazonas (Astrocaryum aculeatum) and tucumã-do-Pará (Astrocaryum vulgare) fruits: bioactive composition, health benefits, and technological potential. Food Research International, 151, 110902. https://doi.org/10.1016/j.foodres.2021.110902
Maetens, E., Hettiarachchy, N., Dewettinck, K., Horax, R., Moens, K., & Moseley, D. O. (2017). Physicochemical and nutritional properties of a healthy snack chip developed from germinated soybeans. LWT, 84, 505–510. https://doi.org/10.1016/j.lwt.2017.06.020
Manzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Em Oxidation in Foods and Beverages and Antioxidant Applications (p. 196–222). Elsevier. https://doi.org/10.1533/9780857090447.1.196
Martínez-Girón, J., Cafarella, C., Rigano, F., Giuffrida, D., Mondello, L., Baena, Y., Osorio, C., & Ordóñez-Santos, L. E. (2024). Peach palm fruit (Bactris gasipaes ) peel: A source of provitamin A carotenoids to develop emulsion-based delivery systems. ACS Omega, 9(26), 28738–28753. https://doi.org/10.1021/acsomega.4c03095
Mota, M. F. dos S., Santos, R. R., Rocha, V. A. L., Braga, D. T., Gomez, J. G. C., Freitas, S. P., Cortes, M. V. de C. B., Freitas Silva, O., Perrone, D., Cavalcanti, E. d’Avila C., & Guimarães Freire, D. M. (2024). Extraction of phenolic compounds from tucuma (Astrocaryum vulgare Mat.) postprocessing cake mediated by rhamnolipids: Evaluation of its antifungal potential against common fruit pathogens. ACS Food Science & Technology, 4(10), 2430–2438. https://doi.org/10.1021/acsfoodscitech.4c00563
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods (Vol. 71). Washington, DC, USA:: ILSI press. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a70fa5a74e79a526d8ea898d193da3588a09a9b6
Rodriguez-Amaya, Delia B., Kimura, M. 2004. HarvestPlus handbook for carotenoid analysis. HarvestPlus Technical Monographs. 2. https://hdl.handle.net/10568/157384
Sagrillo, M. R., Garcia, L. F. M., de Souza Filho, O. C., Duarte, M. M. M. F., Ribeiro, E. E., Cadoná, F. C., & da Cruz, I. B. M. (2015). Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry, 173, 741–748. https://doi.org/10.1016/j.foodchem.2014.10.067
Santos, M. M. R., Fernandes, D. S., Cândido, C. J., Cavalheiro, L. F., Silva, A. F. da, Nascimento, V. A. do, Ramos Filho, M. M., Santos, E. F. dos, & Hiane, P. A. (2018). Physical-chemical, nutritional and antioxidant properties of tucumã (Astrocaryum huaimi Mart.) fruits. Semina: Ciências Agrárias, 39(4), 1517. https://doi.org/10.5433/1679-0359.2018v39n4p1517
SIBBr. (2018). Sistema de Informação sobre a Biodiversidade Brasileira. Tucumã, fruto, polpa, sem casca, sem semente, cru [Base de dados]. https://ferramentas.sibbr.gov.br/ficha/bin/view/FN/ShortName/3625_tucuma_fruto_polpa_sem_casca_sem_semente_crua
Sousa, M. L. R. de, Albuquerque, I. R. de, Moura, L. P. R., Rocha, B. S. da, Nogueira, J. da C., & Freitas, A. D. G. de. (2023). Potencial antimicrobiano dos extratos metanólicos das plantas Astrocaryum aculeatum (tucumã) e Turnera subulata (flor do Guarujá) frente a isolados de bactérias patogênicas. Revista Valore, 8. https://doi.org/10.22408/reva8020231013e-8065
Souza, L. R. de, Santos, I. A., Machado, G. G. L., Pereira, E. P., Vilas Boas, E. V. de B., Botrel, D. A., Carvalho, E. E. N. de, & Damiani, C. (2024). Microencapsulation of carotenoids from tucumã (Astrocaryum aculeatum) peel by :spray drying: Physicochemical properties, antioxidant activity and application in yogurt. Food and Humanity, 3, 100454. https://doi.org/10.1016/j.foohum.2024.100454
Timalsina, P., Prajapati, R., Bhaktaraj, S., Shrestha, R., Shrestha, S., & Mitra, P. (2019). Sweet potato chips development and optimization of chips processing variables. Open Agriculture, 4(1), 118–128. https://doi.org/10.1515/opag-2019-0011
UNICAMP - Universidade Estadual de Campinas. (2011). Tabela brasileira de composição de alimentos – TACO (4ª ed.). Núcleo de Estudos e Pesquisas em Alimentação – NEPA. https://www.unicamp.br/nepa/taco
U.S. Department of Agriculture, Agricultural Research Service. (2024). FoodData Central: Carrots, cooked, boiled, drained, without salt (FDC ID: 11083). https://fdc.nal.usda.gov/fdc-app.html#/food-details/11083/nutrients
Yeganehzad, S., Kiumarsi, M., Nadali, N., & Rabie Ashkezary, M. (2020). Formulation, development and characterization of a novel functional fruit snack based on fig (Ficus carica L.) coated with sugar-free chocolate. Heliyon, 6(7), e04350. https://doi.org/10.1016/j.heliyon.2020.e04350

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vanessa de Souza Marinho, Ludmylla Negreiros do Nascimento, Bruna Ribeiro de Lima, Jaime Paiva Lopes Aguiar, Francisca das Chagas do Amaral Souza

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal publishes its Open Access articles under a Creative Commons license (CC BY 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.